搜索
查看: 2358|回复: 23

[小学数学] 小奥家长来做题!【2】

  [复制链接]
发表于 2021-12-6 09:29 | 显示全部楼层 |阅读模式 来自: 中国上海
本帖最后由 八娃 于 2021-12-16 11:37 编辑

请证明:存在无限多个自然数n使得6n+1和6n-1都是合数。
发表于 2021-12-6 10:06 | 显示全部楼层 来自: 中国上海
反证,假设有限个,那么设n最大为m
6m+1 =kp
构造n=m+k
6n+1=6m+6k+1=k(p+6)
矛盾,所以为无限个
发表于 2021-12-6 10:07 | 显示全部楼层 来自: 中国上海
找一个n的通解,同时满足6n+1模7为0,6n-1模5为0就可以了,应该是这个思路。
发表于 2021-12-6 10:09 | 显示全部楼层 来自: 中国上海
这个好像也不是什么奥数题吧,就是普通的证明题
 楼主| 发表于 2021-12-6 10:26 | 显示全部楼层 来自: 中国上海
kaka2000 发表于 2021-12-6 10:09
这个好像也不是什么奥数题吧,就是普通的证明题

既然都奥神了,那对付普通题不更是小菜一碟嘛~
 楼主| 发表于 2021-12-6 10:42 | 显示全部楼层 来自: 中国上海
本帖最后由 八娃 于 2021-12-6 10:43 编辑
hatastar 发表于 2021-12-6 10:07
找一个n的通解,同时满足6n+1模7为0,6n-1模5为0就可以了,应该是这个思路。

牛!这个方法好,一下子就能找到通解!
发表于 2021-12-6 12:16 来自手机浏览器 | 显示全部楼层 来自: 中国上海
进来看奥神解答
发表于 2021-12-6 12:39 来自手机浏览器 | 显示全部楼层 来自: 中国
kaka2000 发表于 2021-12-06 10:06
反证,假设有限个,那么设n最大为m
6m+1 =kp
构造n=m+k
6n+1=6m+6k+1=k(p+6)
矛盾,所以为无限个

你漏了前面先有第一个,虽然这一步也不难。
发表于 2021-12-6 15:33 | 显示全部楼层 来自: 中国上海
八娃 发表于 2021-12-6 10:26
既然都奥神了,那对付普通题不更是小菜一碟嘛~

没学过奥数,哪来奥神,但是确实只能算拓展,算不上奥数。
发表于 2021-12-6 15:36 来自手机浏览器 | 显示全部楼层 来自: 中国上海
这题超纲了吧,没学过求模运算是很难做出来的
发表于 2021-12-6 15:52 来自手机浏览器 | 显示全部楼层 来自: 中国上海
唉……

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册

x
发表于 2021-12-6 17:18 来自手机浏览器 | 显示全部楼层 来自: 中国上海
3863 发表于 2021-12-06 12:39
你漏了前面先有第一个,虽然这一步也不难。

不需要设第一个的,那个是归纳法的证法,一楼已经说了是反证法了,目前这些已经足够了。而且多说一句,大多数要证明这种无限多个的时候用反证法推出矛盾是最快的方法。
发表于 2021-12-6 17:21 来自手机浏览器 | 显示全部楼层 来自: 中国上海
Anderson 发表于 2021-12-06 17:18
不需要设第一个的,那个是归纳法的证法,一楼已经说了是反证法了,目前这些已经足够了。而且多说一句,大多数要证明这种无限多个的时候用反证法推出矛盾是最快的方法。

不好意思,又看了一下,一楼证明漏了一半,只证了6n+1,还需要证另一半才完整。
发表于 2021-12-6 17:27 | 显示全部楼层 来自: 中国
构造一个符合条件的就可以了。同时能被5、7整除,或者同时能被5、11整除等等。每一种可能都是循环的有无限个n可以符合条件。
发表于 2021-12-7 06:49 来自手机浏览器 | 显示全部楼层 来自: 中国上海
hatastar 发表于 2021-12-06 10:07
找一个n的通解,同时满足6n+1模7为0,6n-1模5为0就可以了,应该是这个思路。

思路非常优秀。

是怎么想到去做mod7和mod5的呢?
能换成别的模数吗?
发表于 2021-12-7 09:19 来自手机浏览器 | 显示全部楼层 来自: 中国上海
3863 发表于 2021-12-07 06:49
思路非常优秀。

是怎么想到去做mod7和mod5的呢?
能换成别的模数吗?

看了答案再理解就简单了,这两个数必然是奇数,2排出,中间的6m,必然是3的倍数,6m必然有个末位是6,那么6m-1必然是5的倍数,6m+1比-1多2,存在比5大2的为7的因子的可能性,就是说,6m-1-5与6m+1-7是5*7的倍数
发表于 2021-12-7 09:58 | 显示全部楼层 来自: 中国上海
3863 发表于 2021-12-7 06:49
思路非常优秀。

是怎么想到去做mod7和mod5的呢?

主要还是要理解数学归纳法的解题思路,这种题目都是有套路的。我不太清楚这道题算几年级的,不过我是支持论坛上的一个说法的,假如家长做4、5年级的数论题目就有点吃力的话,就不要强迫孩子花很大精力学奥数了。我最近仔细看了一下学而思大白3、4、5年级的教材,4年级的奥数体系跟3年级相比跨度太大了,真不是每个小孩都能适应这种知识体系和训练方式。
发表于 2021-12-7 12:38 来自手机浏览器 | 显示全部楼层 来自: 中国上海
roammer 发表于 2021-12-07 09:19
看了答案再理解就简单了,这两个数必然是奇数,2排出,中间的6m,必然是3的倍数,6m必然有个末位是6,那么6m-1必然是5的倍数,6m+1比-1多2,存在比5大2的为7的因子的可能性,就是说,6m-1-5与6m+1-7是5*7的倍数

要么我理解力不行,要么你不知所云……
发表于 2021-12-7 12:39 来自手机浏览器 | 显示全部楼层 来自: 中国上海
本帖最后由 3863 于 2021-12-7 12:44 编辑
hatastar 发表于 2021-12-07 09:58
主要还是要理解数学归纳法的解题思路,这种题目都是有套路的。我不太清楚这道题算几年级的,不过我是支持论坛上的一个说法的,假如家长做4、5年级的数论题目就有点吃力的话,就不要强迫孩子花很大精力学奥数了。我最近仔细看了一下学而思大白3、4、5年级的教材,4年级的奥数体系跟3年级相比跨度太大了,真不是每个小孩都能适应这种知识体系和训练方式。


不,要证明这个结果不难。
难在想到这个思路。

而且第一个n是20,反而不是你35k+1的模式。
 楼主| 发表于 2021-12-7 22:12 | 显示全部楼层 来自: 中国上海
本帖最后由 八娃 于 2021-12-8 20:25 编辑
3863 发表于 2021-12-7 12:39
不,要证明这个结果不难。
难在想到这个思路。

为了保证6n+1和6n-1为合数,分别拿出一个6与余数1和-1组成新数7和5,此时只要前面6(n-1)能被7和5整除,则其一定是合数。实际上分离出1、2、3...个6分别对应7、5;13、11;19、17;...也都可行

也许这么思考能走通。


发表于 2021-12-9 22:36 | 显示全部楼层 来自: 中国广东深圳
取n=35m+1,6n-1=210m+5=5(42m+1)是合数。
6n+1=210m+7=7(30m+1)也是合数。
所以有无数个
 楼主| 发表于 2021-12-12 16:57 | 显示全部楼层 来自: 中国上海
鹰岩 发表于 2021-12-9 05:06
不是什么大神,但是大家都没学过不定方程吗?对于不定方程的特解和通解真的不知道?只要解不定方程6n+1=kp, ...

你娃很优秀!我看小蓝本方程后半部分才讲不定方程。
发表于 2022-1-1 09:11 来自手机浏览器 | 显示全部楼层 来自: 中国上海
你们的思路错了, 小学奥数更像拥有前置知识点以后的解谜题,而不是这样暴力拆解。

做这个题的前置知识点,是被3,5,7整除的数的特点。

能被5整除的数的特点是个位数是5,0。 能被7整除的数,十位以上减各位乘以2能被7整除。 比如63, 6-2*3 是被7整除的,所以63被7整除。

所以可以构造n=70x+1, 那样6n-1=420x+5肯定被5整除。 而6n+1=420n+7, 也肯定被7整除。 问题就解决了。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|千帆网 ( 沪ICP备15002998号-1 )上海千教教育科技有限公司,邮箱:admin@qianfanedu.cn 举报电话:54804512

GMT+8, 2024-11-26 10:57 , Processed in 0.115148 second(s), 16 queries .

快速回复 返回顶部 返回列表